
Actin - Technical Report

Raihan H. Kibria

Computer Systems Lab
Dept. of Electrical Engineering and Information Technology

Darmstadt University of Technology, D-64283 Darmstadt, Germany
kibria@rs.tu-darmstadt.de

http://www.rs.e-technik.tu-darmstadt.de/

Abstract. The Boolean satisfiability problem (SAT) can be solved ef-
ficiently with variants of the DPLL algorithm. For industrial SAT prob-
lems, DPLL with conflict analysis dependent dynamic decision heuris-
tics has proved to be particularly efficient, e.g. in Chaff. In this work,
algorithms that initialize the variable activity values in the solver Min-
iSAT v1.14 by analyzing the CNF are evolved using genetic program-
ming (GP), with the goal to reduce the total number of conflicts of the
search and the solving time. The effect of using initial activities other
than zero is examined by initializing with random numbers. The possi-
bility of countering the detrimental effects of reordering the CNF with
improved initialization is investigated. The best result found (with vali-
dation testing on further problems) was used in the solver Actin, which
was submitted to SAT-Race 2006.

1 SAT

The SAT problem is the question if there exists an assignment to the variables
of a Boolean function f so that f evaluates to true (f is satisfiable), or if no
such assignment exists, i.e. f = false (f is unsatisfiable). SAT is NP-complete.

SAT problems are usually given in conjunctive normal form (CNF), consist-
ing of the conjunction of clauses, which are disjunctions of literals (variables or
negated variables).

1.1 The DPLL Algorithm

The Davis(–Putnam)–Loveland–Logemann algorithm (DPLL or DLL) [1] for
SAT operates on Boolean formulas in CNF. To satisfy a CNF, each clause must
be satisfied (i.e. contain at least one literal which evaluates to true). Unit-literal
clauses containing only one literal can only be satisfied if their literal evaluates
to true; this is a forced assignment or implication. Assigning implications un-
til no further implications are present is called Boolean constraint propagation
(BCP). DPLL searches all variable assignments depth-first for a satisfying set of
assignments, applying BCP after making decision assignments and backtracking
when a clause becomes unsatisfied (i.e. contains only false literals); the latter
case is called a conflict. Before the search, BCP is applied on the original CNF.

Classic DPLL has been extended with features such as non-chronological
backtracking and clause learning [3]. These enabled new decision heuristics which
guide the search dynamically by examining learned clauses, e.g. Chaff’s [4]
Variable State Independent Decaying Sum (VSIDS) heuristic. MiniSAT [6] uses
an improved variant of VSIDS. Each variable has an activity associated with
it, which is a double-precision floating-point value initialized with 0 (in VSIDS,
each literal has its own activity; their initial values are the literal counts in the
original CNF). When a decision has to be made, the variable with the highest
activity value is chosen (ties are broken randomly).

After each conflict, an increment value is added to the activities of the vari-
ables occurring in the conflict clause, and the increment value is multiplied with
a constant greater than 1. Activities decay 5% per conflict. This ensures that re-
cently learned clauses have more influence on the activities. The activities have
to be rescaled once in a while to prevent overflow. With a small probability,
MiniSAT sometimes chooses a random variable. Decision variables are always
assigned the value false first.

1.2 Initialization with Random Values

The initial activity values used in Chaff (literal counts) and MiniSAT (all zero)
are special cases which might not be ideal, at least for SAT problems derived from
industrial hardware verification, e.g. bounded model checking (BMC), which will
be the focus of this work. To estimate the effect that the initialization can have,
the source code of MiniSAT v1.14 was modified to use a random number from
a certain range as the initial activity for each variable. Many different, random
initializations could then be compared to the standard in regard to how long
a problem takes to solve. Since measuring the solving time is always imprecise,
especially for very short times, the number of encountered conflicts was measured
instead. Solving time and number of conflicts are approximately proportional, at
least up to a certain limit; for very large solving times, the BCP speed of solvers
usually drops because of the increasing number of learned clauses.

Using the modified solver, some industrial SAT problems used in the 2005
SAT competition and the 2006 SAT Race [7] were solved a large number of
times with random initializations, and the number of encountered conflicts was
recorded for each initialization. Let the number of conflicts using the standard
initialization for a problem be κ0, then a random initialization will yield a number
of conflicts that is a percentage of κ0. Counting and charting the number of
occurrences of the (rounded) percentages gives an initialization histogram (e.g.
Figure 1). In the caption of the following histogram figures, Nv and Nc are
the numbers of variables and clauses of the problem, T0 is the solving time with
standard initialization on a 2.4 GHz Pentium 4 PC; the number of samples taken
and the range of the random initialization numbers are also given.

Figure 1 shows the histogram of the problem stric-bmc-ibm-10 (satisfi-
able), using random fractional numbers between 0 and 1 for the activities, and
solving 1000 times. The random number range [0, 1] was chosen arbitrarily; some
experimenting with larger ranges like [0, 1000] indicated little difference in the

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250

Fig. 1. stric-bmc-ibm-10 (Nv = 59056, Nc = 323700, T0 = 3 s, κ0 = 4137), 1000
samples, range [0; 1]

resulting histograms. The lowest number of conflicts found was 1995 or 48% of
κ0, the highest was 9126 conflicts (221% of κ0). Better or worse initializations
(that were not found by this experiment) may exist. The histogram has a vague
bell shape, with a peak near 100%. Only a few occurrences of very low or very
high numbers of conflicts were found. For this problem, it is clear from the chart
that the number of conflicts can be reduced to at least half of κ0, if the algorithm
can compute the required initialization from the CNF.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

Fig. 2. stric-bmc-ibm-10 reordered (T0 = 9s, κ0 = 7054), 1000 samples, range [0, 1]

It has been found in the SAT competitions that reordering the CNF of a
SAT problem usually affects the solving time negatively. Reordering changes the
order of the clauses and renames and inverts variables, which does not change
the satisfiability of the problem but changes the progression of the DPLL search.
Next it will be investigated if and to what degree activity initialization may be
used to counter these effects. stric-bmc-ibm-10 was reordered with reorder.c
[5] (random seed was 3); the reordered problem takes 9 seconds (300% of original)
and κ0 = 7054 conflicts (170% of original) to solve. When tested with random

initializations (Figure 2), the lowest number of conflicts found was 2207 (31%
κ0) vs. 1995 for the original problem, the highest was 9165 (130% κ0) vs. 9126
originally.

Since the shapes of the curves in Figure 1 and Figure 2 resemble each other
and both could be solved with similar minimum and maximum numbers of con-
flicts, it is conjectured that the large discrepancy in κ0 for the problems is at
least in part due to different initial decisions, which could be remedied by com-
puting an optimized initialization which identifies good decisions by the CNF
structure rather than by more or less arbitrary variable indexes. An effect of
reordering that can not be affected by optimized initialization is due to the fact
that MiniSAT always assigns decision variables the value false first. If variables
have been inverted, opposite branches of the respective decisions will be explored
in the original and reordered CNFs, possibly leading to a very different course
of the search.

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400

Fig. 3. velev-sss-1.0-cl (Nv = 1453, Nc = 12531, T0 = 1s, κ0 = 15211), 1000 sam-
ples, range [0, 1]

The range over which the number of conflicts can be varied with initialization
seems to be highly dependent on the problem. Figure 3 shows the histogram of
problem velev-sss-1.0-cl (unsatisfiable), which has a κ0 three times that of
stric-bmc-ibm-10 but takes less than half as much time to solve, presumably
because it has only 1/25th as many clauses. Compared to Figure 1 the histogram
has a more spread-out appearance. The number of conflicts ranges from 3262
(21% κ0) to 53983 (355% κ0), with a broad clustering near 50%. Again, extremely
low or high numbers of conflicts are sparse, most values are clustered around a
peak.

Reordering velev-sss-1.0-cl (with random seed 2) yields a problem that
has a κ0 twice that of the original and takes 3 times as long to solve. The
lowest number of conflicts found (Figure 4) was 7649 (25% κ0) vs. 3262 for the
original problem, the highest was 161093 (523% κ0) vs. 53983 originally. For this
problem, reordering made solving much harder and increased the spread of the

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500 600

Fig. 4. velev-sss-1.0-cl reordered (T0 = 3s, κ0 = 30791), 1000 samples, range [0, 1]

histogram. Yet, a good initialization can reduce the number of conflicts to half
that of the original, unreordered problem.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120 140 160

Fig. 5. manol-pipe-g7n (Nv = 23936, Nc = 70492, T0 = 10s, κ0 = 25163), 1000 sam-
ples, range [0, 1]

For manol-pipe-g7n (Figure 5) random initialization found a range from
10645 conflicts (42% κ0) to 40128 conflicts (159% κ0). The corresponding solving
times were 3s and 19s; it can be seen that the number of conflicts and the solving
time are not fully proportional.

κ0 may be more or less near the optimal initialization. For problem velev-
sss-1.0-cl (Figure 3) there were clearly many better initializations. Figure 6
shows the histogram of problem velev-eng-uns-1.0-04a (unsatisfiable), which
is much harder than the previous problems. The best initialization found resulted
in 87544 (83% κ0), the worst had 130965 conflicts (124% κ0). The spread here
is much lower than for the other problems. There are better initializations than
the standard for this problem, but there seems to be less room for improvement
than for the other problems.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100 120 140

Fig. 6. velev-eng-uns-1.0-04a (Nv = 7000, Nc = 67586, T0 = 97s, κ0 = 105931),
1000 samples, range [0, 1]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

Fig. 7. simon-mixed-s02bis-01 (Nv = 2424, Nc = 14812, T0 = 882s, κ0 = 2238242),
50 samples, range [0, 1]

Figure 7 shows the histogram of problem simon-mixed-s02bis-01 (satis-
fiable). It is even harder than velev-sss-1.0-cl despite having much fewer
variables and clauses. Only 50 samples were taken for this problem due to the
large solving time (on a 3.2 GHz Pentium 4). The lowest number of conflicts
found was only 141231 (6% κ0) with a solving time of 37 s (4% T0). Obviously,
for this hard problem a good initialization could make the difference between
time-out and success.

It should be noted that the initial decisions are changed only in their order,
not in their polarity, i.e. the first assigned value is always false. Therefore, this
is not equivalent to a “guess” at a model for satisfiable problems.

2 Genetic Programming

In Section 1.2 it was experimentally investigated how the initial activities influ-
ence the DPLL SAT solving process. It was found that it is possible to signif-
icantly reduce the number of conflicts if the initialization is good; what makes
an initialization beneficial and how to compute it is unknown. Good random ini-
tializations occurred relatively rarely, and may be hard to compute. Since SAT
is NP-complete, it is likely that this “DPLL initialization problem”, which is
similar to the problem of finding an optimal variable order, is hard as well. An
exact algorithm is likely to be of exponential complexity and may take longer
than the actual SAT solving. A heuristic approach is more promising. Instead of
manually designing and testing heuristics one by one, the approach in this work
is modeled on the procedure of evolutionary algorithms.

First, a solution template is designed which should, ideally, be able to de-
scribe all possible solutions (including all optimal ones) of the problem at hand;
this is the phenotype. The solutions have to be encodable in a form that allows
the application of evolutionary operators like crossover and mutation; this is
the genotype. A population of randomly generated solutions, the individuals, is
created. Using a number of fitness cases (concrete instances of the problem)
the individuals are evaluated and assigned a fitness, a number quantifying their
success, by the fitness measure. More fit individuals are more likely to have off-
spring for the next generation. Over the course of many generations the average
fitness increases. Evolutionary algorithms are capable of finding very good, often
non-obvious solutions.

Fig. 8. Example of a GP parse tree

Genetic programming (GP) [2] uses Lisp S-expressions (parse trees, see Fig-
ure 8) composed of terminal- and function-nodes as the genotype. The phenotype
are complex computer programs which may contain conditional operators and
memory operations. Terminals provide problem-specific information or constant
values, while functions take a number of arguments and return a result (they
may also have side effects). To ensure that any arrangement of nodes is valid, all
terminals, function arguments and return values must have the same data type
(closure requirement). The evolutionary operators crossover and mutation work
on trees by exchanging or modifying nodes and subtrees.

This work improves on the concepts introduced in [9]. The initialization al-
gorithm in [9] can describe a subset of the solutions possible in this work.

2.1 Initialization Algorithm

The initialization algorithm has to compute the initial activity value (a floating-
point number) for each variable from the CNF. Some information that can be
easily extracted from the CNF includes the number of variables and clauses
and how often literals occur. The influence of a variable assignment depends
not only on how often the literal occurs, but also with which other literals and
in which polarity it occurs in the clauses. The heuristic to be evolved should
have sufficient information available to find a good initialization, but should not
require extensive preprocessing to extract more complex information from the
CNF.

As a compromise, it is assumed that a single iteration over all clauses that
contain the variable whose activity is computed can gather sufficient information
to compute an adequate result, if not an optimal one. All literals occurring
together with the variable’s literal in each clause can be examined, and the
activity can be modified accordingly. The pseudocode of this algorithm template
(in C-style notation) is:

double computeActivity (Variable X) {
double a0 = 0.0, v1 = 0.0, v2 = 0.0;
PRE_LOOP_CODE;
for (all clauses C containing X) {
for (all literals L in C, except the literal of X) {

IN_LOOP_CODE;
}

}
POST_LOOP_CODE;
return a0;

}

The function computeActivity computes the initial activity of SAT variable
X and returns it. It is called once each for all variables of the CNF. Inside the
function the variable a0, which is set to 0 at the beginning, stores the activity.
This variable’s value can be modified with some operators that will be made

available to GP. Additionally there are two variables v1 and v2 for storing and
computing auxiliary results.

The placeholders PRE LOOP CODE, IN LOOP CODE and POST LOOP CODE stand
for the program fragments that will be evolved with GP. They will contain ex-
pressions with and without side effects (e.g. changing one of the variables). If a
program fragment contains only expressions without side effects, it is equivalent
to empty code. In all fragments some basic information (in the form of termi-
nals) is available, e.g. how often X occurs. For IN LOOP CODE some additional
information about the clause C and the literal L is made available.

2.2 Terminal and Function Sets

The three program fragments of the initialization algorithm have different sets
of available terminals. PRE LOOP CODE and POST LOOP CODE are outside the loop,
so they do not have access to terminals describing the clause C and the literal
L. Table 1 shows all available terminals.

Table 1. Terminal set

Terminal Meaning

Available in all program fragments:
xn, xp, xc # of negative/positive/total literals of X in the CNF
nv, nc # of variables/clauses of the CNF
0, 1, 2, 3, 4 The numerical constants 0, 1, 2, 3, 4
a0, v0, v1 Current values of variables a0, v1 and v2

Only for IN LOOP CODE:
ln, lp, lc # of negative/positive/total literals of variable of L in the CNF
cs # of literals in current clause C
xs, ls Polarity of X in clause C / current literal L (0 negative, 1 positive)
ic, il Index of clause C / literal L (0 ≤ ic < xc, 0 ≤ il < cs − 1)

A number of functions with one, two or three arguments are available (Ta-
ble 2) for all program fragments. The function return values as well as the cur-
rently computed activity are restricted to the (arbitrary) range [−106, 106]. If a
value is lower than −106 or higher than 106, it is set to the respective maximum
negative or positive limit. The arithmetic division operation is implemented in
such a way that division by very small values or zero returns the positive or
negative limit.

2.3 Fitness Measure

The progress of evolution in GP is controlled by the fitness measure. Individuals
are assigned a fitness value, which is a single number signifying the quality of
the solution. The lower the fitness value, the better the solution. The fitness

Table 2. Function set

Function Return value Function Return value

add(v) a0 := a0 + v, return new a0 sqrt(v) v < 0 : −1, v ≥ 0 :
√

v
sub(v) a0 := a0− v, return new a0 abs(v) |v|
mul(v) a0 := a0× v, return new a0 progn2(x,y) Evaluate x and y, return y
div(v) a0 := a0÷ v, return new a0 min(x,y) min(x,y)
set(v) a0 := v, return new a0 max(x,y) max(x,y)
setv1(v) v1 := v, return new v1 and(x,y) (x > 0) ∧ (y > 0) : 1, else 0
setv2(v) v2 := v, return new v2 or(x,y) (x > 0) ∨ (y > 0) : 1, else 0
inv(v) 1

v
xor(x,y) (x > 0 ∧ y ≤ 0)∨

neg(v) −v (x ≤ 0 ∧ y > 0) : 1, else 0
exp(v) ev lessthan(x,y) x < y : 1, else 0
log(v) v ≤ 0 : −106, v > 0 : ln(v) x {+,-,*,%} y Arithmetics
sgn(v) v < 0 : −1, v = 0 : 0, progn3(x,y,z) Evaluate x, y, z, return z

v > 0 : 1 if(x,y,z) x > 0 : y, x ≤ 0 : z

cases for GP will be one or more SAT problems. Each individual will be used to
compute an initialization for the problems; solving yields the number of conflicts
encountered. In the implementation in this work no time-out is possible; the
solver runs until the problem is solved.

The simplest fitness measure is to sum up the number of conflicts for all
problems. This would drive evolution toward an algorithm that solves the prob-
lems with the lowest total number of conflicts. Should two individuals result in
the same number of conflicts, they would be assigned equal fitness, even though
they may improve the solving of each single problem to different degrees. In
such a case, the solution that improves harder problems more than easier ones
is preferable. This can be achieved by summing up the squares of the numbers
of conflicts, which prefers low numbers to high numbers disproportionally. Also
returned by the SAT solver is the number of decisions made. If two individu-
als achieve the same number of conflicts, the one that required a lower number
of decisions should be preferred. When the numbers of conflicts and decisions
achieved by two individuals is equal, the trees that represent the program frag-
ments may differ in complexity. In such a case, the individual with the most
compact trees is to be preferred. A measure for the complexity of a tree is the
length, i.e. the number of nodes it has.

Let Fk be the fitness value of individual k, Np the number of fitness cases,
ck,i the number of conflicts on solving problem i with individual k and dk,i the
number of decisions; the total number of nodes in all trees of the individual k is
lk. Then Fk is computed according to Equation 1.

Fk =

√√√√
Np∑

i=1

(ck,i +
dk,i

1000
)2 +

lk
1000

(1)

The main influence on the fitness should be the number of conflicts, while
the number of decisions and the length of the trees are of secondary importance.
Therefore the latter are divided by a factor 1000. To scale back the sum of the
squares, which can become very large, the square root is taken of it.

3 Experimental Results

3.1 Implementation

The SAT solver MiniSAT v1.14 [6] was used in this work, and the GP function-
ality was implemented using the gpc++ library [8]. After a SAT problem is read
from disk, the solver preprocesses it by applying BCP. The activity initialization
algorithm operates on the preprocessed CNF.

The initialization algorithm as described in Section 2.1 computes the activity
for each variable one by one. For various reasons it was simpler to implement
the algorithm in a modified form which iterates over all clauses only once and
computes all activities in one go. This is achieved by considering all combinations
of the variable X and literal L in each clause and running the IN LOOP CODE
fragment for each combination. The order in which the CNF’s clauses are stored
may lead to different activities being computed, depending on the initialization
algorithm. No measures were taken to preserve the original order of the clauses
in the file. MiniSAT stores binary (two-literal) clauses in the watcher lists, from
which they have to be extracted first. The initialization algorithm iterates over
the binary clauses first.

For all experiments the default parameters of the GP library were used:
crossover probability 95%, creation probability 2%, creation type Ramped Half
and Half, maximum depth for creation was 6, maximum depth for crossover was
17. The selection type was tournament selection, with a tournament size of 10.
Steady state GP was turned on, demetic grouping was off. Mutation probability
was 0%. GP uses population sizes (the number of individuals) ranging from
1000 to 16000, depending on the problem [2]. In this work, due to the large
computation times, the population size in all experiments was 1000. The usual
number of generations in GP is ca. 21 to 51; in this work, it was 5.

3.2 Results

The three SAT problems stric-bmc-ibm-10 (problem “S” henceforth), velev-
sss-1.0-cl (“V”) and manol-pipe-g7n (“M”), whose initialization histograms
can be seen in Section 1.2, will be used as fitness cases for GP.

The best result found in the precursor work [9], using 9 fitness cases, was
equivalent to IN LOOP CODE = {add(exp(-lc)-lp)} (it always computes a neg-
ative activity). It was capable of improving the solving of non-fitness-case prob-
lems noticably.

First it was attempted to find an initialization algorithm that can improve
the solving of problem S alone. With only one fitness case, it is likely that any

solution found (especially if it is extremely good) is specialized on that problem,
with much decreased efficiency for other problems. On the other hand, the range
of the number of conflicts that results from GP can be compared to random
initialization, possibly yielding cues on how reliable the results of the latter are.
The best solution for S was found in generation 0 (the first one, containing
randomly generated individuals). The individual’s program fragments were:

PRE_LOOP_CODE = neg (4)
IN_LOOP_CODE = if (sub (xp), cs, inv (4))

POST_LOOP_CODE = exp (neg (xc))

Using this algorithm, the number of conflicts for solving the problem was
464 (11% κ0) and the number of decisions was 9231. There are a total of 11
nodes in the trees, which (using Equation 1) results in a fitness of 473.242 for
the individual.

PRE LOOP CODE and POST LOOP CODE only contain functions without side ef-
fects, so they are equivalent to empty code. IN LOOP CODE contains the activity-
modifying expression sub(xp). This operation subtracts the number of positive
occurrences of the variable X once for every literal (minus 1) in clauses that
contain X. The resulting activities of all variables will therefore be negative.
In the course of evolution the remaining non-functional expressions in the trees
were eliminated, until the PRE- and POST-trees contained only one terminal node
and the IN-tree contained only sub(xp), but no lower number of conflicts could
be achieved. Compared to the best result found by random initialization (1995
conflicts, 48% of κ0), the result found by GP (464 conflicts) is a large improve-
ment.

Table 3. stric-bmc-ibm-10: # conflicts with GP initializations

orig. reord. corig,best corig,worst creord,best creord,worst√
- 464 (11% κ0) 9248 (224% κ0) - -

-
√

- - 2145 (30% κ0) 9305 (132% κ0)√ √
1239 (30% κ0) 7445 (180% κ0) 3014 (43% κ0) 7329 (104% κ0)

Table 3 shows the best and worst results when using S alone, the reordered S
or both together as fitness cases. It can be seen that better initializations could
be found when using a problem alone. GP found a slightly better initialization
than the random procedure for the reordered problem. Table 4 shows the pro-
grams corresponding to the results of these experiments (if no code is given for
a fragment, it is empty). The programs seem to have little in common.

More experiments were made with S, V and M in several combinations; all
three together was run twice. Table 5 shows the best (indexed b) and worst
results (indexed w), in % of κ0, for each problem alone in each experiment and
the average. Table 6 contains the resulting programs, which show no obvious

Table 4. stric-bmc-ibm-10: best and worst GP individuals

orig. reord. Best Worst√
- IN: sub(xp) POST: add(nc+3)

-
√

POST: add(exp(1)) IN: set(min(xn,xp))√ √
PRE: add(nc) IN: set(xc)

IN: sub(nv) POST: div(xp)

POST: sub(xn), mul(2), sub(xc)

structure. For V and M, GP did not find initializations as good as the random
procedure. When using several problems, the best results for each single problem
seem to get worse (with exceptions), but the average improvement is still good.
On average, solving the fitness cases with initialization takes less than half the
number of conflicts as without.

Table 5. All problems: % of κ0 with GP initializations

Combination Sb Sw Vb Vw Mb Mw Sumb Sumw

S 11 224 - - - - - -

V - - 23 583 - - - -

M - - - - 50 145 - -

SV 73 75 29 1079 - - 38 864

SVM1 9 98 39 495 52 106 43 239

SVM2 62 74 38 399 52 111 48 206

3.3 Result used in SAT-Race 2006

Additionally to the base algorithm used in the experiments described before, a
normalization phase was added: it searches for the largest absolute initialization
value and divides all activities by it, so that all activities are between −1 and
1. This was done because for many problems (especially large, industrial ones)
the computed raw activities had very large values, with unknown effect on the
decision heuristic. With normalization only the first few decisions should be
influenced. Using normalization did not seem the range of influence (factor 10
better or worse) of the initialization.

Many more GP runs were executed, most of which yielded strongly varying
results. To further filter out flukes, a validation test was done using the problems
from the first qualification round of SAT-Race 2006. The best result found was:

PRE_LOOP_CODE = {}
IN_LOOP_CODE = add (lc)

POST_LOOP_CODE = {}

Table 6. All problems: best and worst GP individuals

Test Best Worst

S IN: sub(xp) POST: add(nc+3)

V PRE: div(lessthan(2,xn)) IN: add(and(ls,xs))

POST: div(2)

M IN: add(ln+xs+1) POST: set(nv)

SV IN: set(lp) PRE: add(sgn(set(xp)+nc-3))

POST: add(1) IN: setv1(add(setv1(xs))),setv1(setv2(xc))

POST: if(xor(v2,a0)%add(v1),0,sub(xc))

SVM1 PRE: set(xn) IN: setv2(set(xp)),

IN: div(lp) if(lessthan(ln,v2),0,mul(il))

POST: add(1)

SVM2 IN: set(3),div(2) IN: div(sub(1))

4 Conclusion

In this work it was found that the initial values of the activities in VSIDS-like
decision heuristics, e.g. in MiniSAT, have a strong effect on the total number
of conflicts encountered to solve SAT problems. Good initializations can reduce
that number by a factor 10 or more, and improve solving time accordingly, while
“bad” ones can increase the number of conflicts by a factor 10. Using experiments
with random values, it was found that the range of effect of initialization depends
on the problem. Reordered problems were found to be affected similarly, but not
necessarily equally by initialization as the original ones.

With little indication of the requirements of an algorithm to compute ben-
eficial activities from any CNF, the approach taken was to design an ad hoc
algorithm template (based on a precursor work) which has some information
about the CNF and a set of operations. Using genetic programming, randomly
generated solutions could be evolved and optimized driven by a fitness measure
favoring lower numbers of conflicts, with real, industrial SAT problems as fitness
cases. The evolved solutions could compute beneficial activities for one or more
problems, but the underlying principle could not be discerned.

To the author’s knowledge, the initialization of VSIDS activities has not been
researched thoroughly. The experiments in this work seem to indicate that the
potential gain in solving speed is large, about one order of a magnitude, without
requiring any changes to the other parts of the SAT solver. It is unknown if the
algorithm template presented in this work is capable of representing an algorithm
that can compute beneficient activities for the general case.

References

1. M. Davis, G. Logemann, D. Loveland: A machine program for theorem proving.
Communications of the ACM, vol 5, 1962.

2. J. R. Koza: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, 1994.

3. J. P. Marques-Silva, K. A. Sakallah: GRASP - A New Search Algorithm for Satis-
fiability. ICCAD. IEEE Computer Society Press, 1996.

4. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik: Chaff: Engineering
an Efficient SAT Solver. Proc. of the 38th Design Automation Conference, 2001.

5. L. Simon, E. Hirsch: reorder.c - SAT competition instance shuffler,
http://www.satcompetition.org/2003/TOOLBOX/

6. N. Eén, N. Sörensson: MiniSat - A SAT Solver with Conflict-Clause Minimization.
Poster for SAT 2005,
http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/Main.html

7. SAT Race 2006, August 12 - 15, Seattle, WA, USA,
http://www.fmv.jku.at/sat-race-2006/

8. A. Fraser, T. Weinbrenner: gpc++ v0.5.2 - The Genetic Programming Kernel.
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/weinbenner/gp.html

9. R. H. Kibria, Y. Li: Optimizing the Initialization of Dynamic Decision Heuris-
tics in DPLL SAT Solvers Using Genetic Programming. EuroGP 2006: 331-340.
http://dx.doi.org/10.1007/11729976 30

